Developments in Atmospheric Science, 2

WAVES IN THE ATMOSPHERE

Atmospheric Infrasound and Gravity Waves their Generation and Propagation

by

EARL E. GOSSARD

Chief, Meteorological Radar Program, Wave Propagation Laboratory, N.O.A.A., Environmental Research Laboratories, U.S. Department of Commerce, Boulder, Colorado, U.S.A.

and

WILLIAM H. HOOKE

Chief, Geoacoustics Research Program, Wave Propagation Laboratory, N.O.A.A., Environmental Research Laboratories, U.S. Department of Commerce, Boulder, Colorado, U.S.A.

ELSEVIER SCIENTIFIC PUBLISHING COMPANY Amsterdam — Oxford — New York 1975

Preface	:	•	•				:	•	:	•	•	V IX
CHAPTER 1. INTRODUCTION												1
												-
1. Historical review.	·	·	•	•	•	•	•	•	·	•	•	1
2. Recent developments in wave sensing	•	•	•	•		•	•	·	•	•	•	9
3. Names and nonsense	•	•	•	•	•	•	•	•	•	•	•	13
4. Glossary of symbols and definitions	•	•	•	•			•	·	•	•		15
5. Vertical distribution of atmospheric properties.	•	•	•	•		•	٠	•		•	•	18
6. Typical values of wave parameters	·	÷	•	•	•	•	·	•	·	•	•	25
CHAPTER 2. THE FUNDAMENTAL EQUATIONS												27
7. Introduction		. `										27
8. A little thermodynamics												27
The first law												27
Equation of state												28
Specific heat												30
Internal energy												31
Work done by external forces		÷.						j.				32
Adiabatic processes	j.											33
Isothermal processes	÷											33
9. Continuity equation	0						÷.		Ċ,			34
Conserved properties												34
Conservation of matter		Ċ		1								35
Continuity equation in the ionosphere	Ċ										÷	37
Production and loss in the ionospheric continuity	, eq	uati	ion									38
10. Equations of motion	- og	uu v									·	39
Conservation of momentum											Ċ	39
The stress tensor						•						40
The shearing stresses			•					÷.				41
The Beynolds' stresses and eddy viscosity		•	•	•		•		·	•		·	45
The Coriolis force						•		·			1	46
Inertial oscillations	÷	•	•						•	·	Ċ	50
Scale analog of a rotating earth	•	•				•	•		Ċ			51
The force of gravity	·		•	·	•	•	•	•	•	•		52
11 The electromagnetic forces	•	•	•	•		•	•	•	•	•	•	55
12 Ohm's law in the ionosphere		•	•	•		•	•		•	•	•	58
12. Only slaw in the follosphere	•		•	•	•	•	•		•	•		60
14. The high frequency approximations	•	•	•	•	•	•	•	•	•	•	•	60
14. The high-frequency approximations	•	•	•		•	•	•	•	•	•	۰.	60
Electromagnetic waves.	•	•	•	•		•	•	•	•	•	•	60
Electrostatic waves	•	•	•	•	•	•	•	•	•	•	•	04
15. The low-irequency equations	٠.	•	•	•	•	•	•	•	•	•	•	60
16. The perturbation equations	·	•	•	•	•	•	•	·	•	•	•	66
17. Speed of sound	•	·	•	•	•	•	•	•	•	•	•	70
18. Potential temperature and the Vaisala-Brunt freq	uen	cy	•	•	•	•	•	•	•	•		71
19. Gravity waves												75

20.	The Lagrangian equations							•	•	77 78 80
OIII	ATTER 0. RELATIONSHID DETWEEN FIELD VARIAD		0	•	•	•	•	•	•	00
21.	The basic equations									89
	Eckart's coefficient – the Boussinesq approximation.						•		•	90
	Some dynamic relationships						·			92
	The impedance equation				•		•			93
	Lamb waves	•						•	•	95
	Rossby waves				•	•	•	•	•	96
	The polarization equations			•	•	•	•	•	•	97
22.	Energy and momentum			•	•	•	•	•	•	100
	Wave energy and energy flux			•	•	•	•	•	•	100
	Wave momentum flux			•	•	•	•	•	•	108
OII	ADWED A WANTE FOULATIONS AND DISPEDSION FOULA	m	~	TC						
CH	APTER 4. WAVE EQUATIONS AND DISPERSION EQUA	.1.1	Or	S	•	•	•	•	•	111
23.	Compressible model with earth rotation, no vertical shear, n	non	-io	niz	ed	me	diu	ım		111
	Some special cases		-							112
	The propagation diagnostic diagram									113
	The acoustic cut-off frequency (diagnostic diagram Branch .	A).								113
	Buoyancy waves (diagnostic diagram Branch B)									115
1	The propagation surfaces									117
	Interpretation of the dispersion equation for buoyancy-iner	tial	w	ave	S					118
	Group velocity and energy flow						•		•	118
24.	Model with vertical shear, no earth rotation		-				•			121
OF	T I I I I I I I I I I									
20.	lonized, incompressible, inviscid model; no collisions; no ea	rth	ro	tat	ion		•	•	•	124
25. CHA	APTER 5. SOME BOUNDARY VALUE PROBLEMS	rth	ro	tat	ion		•	•	•	124 129
25. CH4 26.	APTER 5. SOME BOUNDARY VALUE PROBLEMS	rth	ro	tat	ion		•	•	•	124 129 129
25. CHA 26.	Ionized, incompressible, inviscid model; no collisions; no ea	rth	ro	tat	ion			•	•	124 129 129 129
25. CH4 26.	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction . Layered models . Continuous-function models .	rth	ro		ion		•	•	•	124 129 129 129 130
25. CH4 26.	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction . Layered models . Continuous-function models . Arbitrary models .	rth	ro		ion		•	•	• • • • •	124 129 129 129 130 130
25. CHA 26. 27.	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition	rth	ro		ion		•	•		124 129 129 129 130 130 130
 25. CHA 26. 27. 28. 	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The dynamic boundary condition	rth	ro		ion		•	· · · · · · · ·		124 129 129 130 130 130 131
 25. CHA 26. 27. 28. 29. 	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density	rth	ro		ion		•	•		124 129 129 130 130 130 131 132
25. CHA 26. 27. 28. 29.	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous	rth	ro		ion		•			124 129 129 130 130 130 131 132 132
 25. CHA 26. 27. 28. 29. 	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous Model with wind and density discontinuous	rth	ro		ion			•		124 129 129 130 130 130 131 132 132 136
25. CH4 26. 27. 28. 29.	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous Model with wind and density discontinuous The Wegener hypothesis	rth	ro		ion					124 129 129 130 130 130 131 132 132 136 138
25. CHA 26. 27. 28. 29.	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous The Wegener hypothesis Model with two wind and density discontinuities	rth	ro		ion					124 129 129 130 130 130 131 132 132 136 138 141
23. CH2 26. 27. 28. 29.	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous The Wegener hypothesis Model with two wind and density discontinuities Model with constant shear, one density discontinuity	rth	ro		ion					124 129 129 130 130 130 131 132 132 136 138 141 143
23. CH2 26. 27. 28. 29.	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous The Wegener hypothesis Model with two wind and density discontinuities Model with constant shear, one density discontinuity Model with constant shear, two discontinuities in density	rth	ro		ion					124 129 129 130 130 131 132 132 136 138 141 143 144
23. CHA 26. 27. 28. 29.	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous The Wegener hypothesis Model with two wind and density discontinuities Model with constant shear, one density discontinuity Model with constant shear, two discontinuities in density	ies	ro		ion					124 129 129 130 130 131 132 132 136 138 141 143 144 146
25. CHA 26. 27. 28. 29.	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous The Wegener hypothesis Model with two wind and density discontinuities Model with constant shear, one density discontinuity Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities	ies	ro		ion					124 129 129 130 130 130 131 132 132 136 138 141 143 144 146 147
25. CHA 26. 27. 28. 29. 30.	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous The Wegener hypothesis Model with two wind and density discontinuities Model with constant shear, one density discontinuity Model with one density and two wind gradient discontinuities Model with one density and two density discontinuities	ies	ro		ion					124 129 129 130 130 130 131 132 132 136 138 141 143 144 146 147 149
 25. CHA 26. 27. 28. 29. 30. 	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous The Wegener hypothesis Model with constant shear, one density discontinuities Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities Figure Solutions, models continuous in density	ies	ro		ion					124 129 129 130 130 130 131 132 132 136 138 141 143 144 146 147 149
 25. CHA 26. 27. 28. 29. 30. 	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous The Wegener hypothesis Model with constant shear, one density discontinuities Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities Figensolutions, models continuous in density Model with wo wind and density discontinuities Model with two wind and density discontinuities Model with constant shear, one density discontinuities Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities Figensolutions, models continuous in density Homogeneous model with shear Three-layer model continuous in density and temperature, r	rth	she	tat	ion					124 129 129 130 130 130 131 132 132 136 138 141 143 144 146 147 149 150
 25. CHA 26. 27. 28. 29. 30. 	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The kinematic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous Model with wind and density discontinuous The Wegener hypothesis Model with constant shear, one density discontinuities Model with one density and two wind gradient discontinuities Model with one density and two wind gradient discontinuities Figensolutions, models continuous in density Model with constant shear, two discontinuities in density Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities Figensolutions, models continuous in density Homogeneous model with shear Three-layer model continuous in density and temperature, r Two-layer model, surface-based inversion	ies	she	tat	ion					124 129 129 130 130 130 131 132 132 136 138 141 143 144 146 147 149 150 156
 25. CHA 26. 27. 28. 29. 30. 	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The dynamic boundary condition The dynamic boundary condition Eigensolutions, models discontinuous in density Model with no shear, density discontinuous Model with wind and density discontinuous The Wegener hypothesis Model with constant shear, one density discontinuities Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities Figensolutions, models continuous in density Model with constant shear, two discontinuities in density Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities Figensolutions, models continuous in density Homogeneous model with shear Three-layer model continuous in density and temperature, r Three layers continuous in density, temperature, and wind	ies	she	tat	ion					$\begin{array}{c} 124\\ 129\\ 129\\ 129\\ 130\\ 130\\ 130\\ 130\\ 131\\ 132\\ 132\\ 136\\ 138\\ 141\\ 143\\ 144\\ 146\\ 147\\ 149\\ 150\\ 156\\ 156\\ 156\end{array}$
 25. CHA 26. 27. 28. 29. 30. 	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The kinematic boundary condition The dynamic boundary condition The dynamic boundary condition Model with no shear, density discontinuous Model with wind and density discontinuous The Wegener hypothesis Model with constant shear, one density discontinuities Model with one density and two wind gradient discontinuities Model with one density and two wind gradient discontinuities Figensolutions, models continuous in density Model with constant shear, two discontinuities in density Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities Figensolutions, models continuous in density Homogeneous model with shear Three-layer model continuous in density and temperature, r Three layers continuous in density, temperature, and wind General three-layer model; homogeneous shear layer	rth	she	tat	ion					$\begin{array}{c} 124\\ 129\\ 129\\ 129\\ 130\\ 130\\ 130\\ 131\\ 132\\ 132\\ 136\\ 138\\ 141\\ 143\\ 144\\ 146\\ 147\\ 149\\ 150\\ 156\\ 156\\ 156\\ 157\\ \end{array}$
 25. CHA 26. 27. 28. 29. 30. 31. 	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The kinematic boundary condition The dynamic boundary condition The dynamic boundary condition Model with no shear, density discontinuous Model with wind and density discontinuous Model with wo wind and density discontinuities Model with constant shear, one density discontinuity Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities Eigensolutions, models continuous in density Model with constant shear, two discontinuities in density Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities Eigensolutions, models continuous in density Homogeneous model with shear Three-layer model, surface-based inversion Three layers continuous in density, temperature, and wind General three-layer model; homogeneous shear layer Models continuous in gradients of velocity and density	rth	she	tat	ion					$\begin{array}{c} 124\\ 129\\ 129\\ 129\\ 130\\ 130\\ 130\\ 130\\ 131\\ 132\\ 132\\ 136\\ 138\\ 141\\ 143\\ 144\\ 146\\ 147\\ 149\\ 150\\ 156\\ 156\\ 156\\ 157\\ 162 \end{array}$
 25. CHA 26. 27. 28. 29. 30. 31. 	Ionized, incompressible, inviscid model; no collisions; no ea APTER 5. SOME BOUNDARY VALUE PROBLEMS Introduction Layered models Continuous-function models Arbitrary models The kinematic boundary condition The kinematic boundary condition The dynamic boundary condition The dynamic boundary condition Model with no shear, density discontinuous Model with wind and density discontinuous Model with wo wind and density discontinuities Model with constant shear, one density discontinuity Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities Eigensolutions, models continuous in density Model with constant shear, two discontinuities in density Model with constant shear, two discontinuities in density Model with one density and two wind gradient discontinuities Eigensolutions, models continuous in density Homogeneous model with shear Three-layer model, surface-based inversion Three layers continuous in density, temperature, and wind General three-layer model; homogeneous shear layer Models continuous in gradients of velocity and density	rth ies	she	tat	ion					$\begin{array}{c} 124\\ 129\\ 129\\ 129\\ 130\\ 130\\ 130\\ 130\\ 131\\ 132\\ 132\\ 136\\ 138\\ 141\\ 143\\ 144\\ 146\\ 147\\ 149\\ 150\\ 156\\ 156\\ 156\\ 157\\ 162\\ 162\\ 162 \end{array}$

XII

32. 33.	$\begin{array}{l} \mbox{Model with tanh wind profile; $\rho = \rho_s \exp\left(-S \tanh z/d\right)$} . \\ \mbox{The WKB approach}$						•	•••••••		167 168 170 170 171 172 175 176
CH	APTER 6. DYNAMIC STABILITY OF ATMOSPHERIC W	A	/Es	5	•		·	·		183
34. 35. 36. 37. 38.	Introduction		• • • • • • •	•••••••••••••••••••••••••••••••••••••••						183 185 188 189 197 198 199 200 202 210
СН	APTER 7 WAVE PROPAGATION IN A DISSIPATIVE A	TN		SPF	IEF	· RE				215
39	Introduction									215
39. 40.	Minimum wave scale sizes permitted in the presence of conductivity	vis	cos	ity	an	id t	he	rm	al	215
41. 42. 43.	Buoyancy and acoustic waves in viscous or thermally con- limiting approximations	d pre avi	ssil ty kin	ng a ble neg atic	atm	nos	phe	ere	al	224 225 230 231 232 233
101	conductivity									234
 44. 45. 46. 47. 48. 49. 50. 	Wave propagation in a windless, isothermal atmosphere work thermal conductivity	vith fric sph g	ere tio ere	onst on	tan [*]	t vi	sco	sit	y	235 236 237 238 238 247 249
CH	APTER 8. MOUNTAIN LEE WAVES								•	251
51. 52. 53.	Introduction		•			••••••			•	251 252 252 254 254
	Boundary perturbation concentrated on v-axis	:	:	:	:		:	:	•	254
	Bell-shaped boundary perturbation				1					256

XIII

 54. 55. 56. 57. 58. 59. 	$\begin{array}{llllllllllllllllllllllllllllllllllll$	· · · · · · · · · · · · · · · · · · ·		257 257 257 261 262 265 265 265 265 265 268 269 270 272 278
CH	APTER 9. INFRASOUND	· • 4•		283
60.	Introduction	• • •		283
61.	Sources of infrasound			283
	Auroral emissions from magnetic substorms			287
	Infrasonic emissions from severe weather			289
	Infrasonic emission from the sea surface (microbaroms)			295
	Infraçound of unknown origin			300
20		• • •	• • •	000
62.	Propagation of infrasound — the normal mode approach		• • •	304
	Formulation for numerical solution by normal modes			305
	Impulsive point source.			312
	Examples of numerical solution by normal modes			319
63	Propagation of infrasound — ray tracing			399
00.	Charles of the strength is a second starting the strength is a second starting the strength is second starting the strength is second starting to second starting the strength starting to second starting			2000
64.	Structure of the atmospheric wave guide		• • •	340
65.	Reception and analysis of infrasound			328
	Power-spectrum analysis – general			329
	The covariance function			330
	Power-spectrum computation – transform of $R(\tau)$			331
	Power spectrum computation — Fast Fourier Transform (FFT)			339
	Fower-spectrum computation Fast Fourier Transform (FFT)			004
	Cross-power spectrum			333
	Applications of cross-spectrum analysis to spatially separated re	cordings		335
	Beam steering of phased arrays			337
	Beamwidth of signal			341
	Velocity handwidth			348
	Concrel solution			359
		• • •	• • •	256
				200
CH	APTER 10 PROGRESSIVE BUOYANCY WAVES IN THE	LOWER	ATMO-	
SP	HERE	LOWLIC	AIMO	250
D1		• • •	• • •	222
66	Introduction			359
67	Review of proposed wave sources and source mechanisms in	the low	or atmo	000
01	suboro	the low	er atmo-	050
	Sphere		• • •	359
	Orography.			359
	Squall lines and frontal systems			360
	Turbulence			360
	Penetrative convection			362
				2004
	Wave-wave interactions			201
	Wave—wave interactions	• • •	• • •	002
	Wave—wave interactions	· · ·	• • •	362
	Wave wave interactions	· · · ·	· · · ·	362 363

	Ekman-layer instability				•							363
	Wave generation by boundary-layer turbulence.											363
68.	Case studies — introduction											364
	Long waves on elevated layers											364
	Wayes generated by shear instability in the troposphe	ere										386
	Wayes in the boundary layer											387
	Small-scale waves and vortices · · · · · · ·	•		•		·	•		•	÷	•	389
СН	APTER 11. WAVES IN THE UPPER ATMOSPHERI	E										399
69.	Introduction											399
70.	Buoyancy waves manifested in the neutral upper atm	los	phe	ere								402
71.	Atmospheric waves manifested in the ionized upper a	atn	105	phe	ere							406
	Traveling ionospheric disturbances											406
	Spread F											413
	Sporadic E							•				414
	D-region ionospheric irregularities											417
72.	Propagation in the upper atmosphere											417
73.	Sources of buoyancy waves in the upper atmosphere											418
74.	Wave dynamics in the upper atmosphere										•	420
	Wave energy and momentum deposition in the upper	at	m	spl	her	e						420
	The quasi-biennial oscillation			•			·		•		•	422
Re	ferences											423
100												
Ap	pendices		•	•	·	•	•	•	•	·		441
Au	thor Index									•		443
Su	bject Index											449

XV